Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}-5t-16=0
Divide both sides by 5. Zero divided by any non-zero number gives zero.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-16\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-5\right)±\sqrt{25-4\left(-16\right)}}{2}
Square -5.
t=\frac{-\left(-5\right)±\sqrt{25+64}}{2}
Multiply -4 times -16.
t=\frac{-\left(-5\right)±\sqrt{89}}{2}
Add 25 to 64.
t=\frac{5±\sqrt{89}}{2}
The opposite of -5 is 5.
t=\frac{\sqrt{89}+5}{2}
Now solve the equation t=\frac{5±\sqrt{89}}{2} when ± is plus. Add 5 to \sqrt{89}.
t=\frac{5-\sqrt{89}}{2}
Now solve the equation t=\frac{5±\sqrt{89}}{2} when ± is minus. Subtract \sqrt{89} from 5.
t=\frac{\sqrt{89}+5}{2} t=\frac{5-\sqrt{89}}{2}
The equation is now solved.
t^{2}-5t-16=0
Divide both sides by 5. Zero divided by any non-zero number gives zero.
t^{2}-5t=16
Add 16 to both sides. Anything plus zero gives itself.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=16+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-5t+\frac{25}{4}=16+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-5t+\frac{25}{4}=\frac{89}{4}
Add 16 to \frac{25}{4}.
\left(t-\frac{5}{2}\right)^{2}=\frac{89}{4}
Factor t^{2}-5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Take the square root of both sides of the equation.
t-\frac{5}{2}=\frac{\sqrt{89}}{2} t-\frac{5}{2}=-\frac{\sqrt{89}}{2}
Simplify.
t=\frac{\sqrt{89}+5}{2} t=\frac{5-\sqrt{89}}{2}
Add \frac{5}{2} to both sides of the equation.