Solve for p
p=-12
Share
Copied to clipboard
5p+15+9=3\left(p-2\right)+6
Use the distributive property to multiply 5 by p+3.
5p+24=3\left(p-2\right)+6
Add 15 and 9 to get 24.
5p+24=3p-6+6
Use the distributive property to multiply 3 by p-2.
5p+24=3p
Add -6 and 6 to get 0.
5p+24-3p=0
Subtract 3p from both sides.
2p+24=0
Combine 5p and -3p to get 2p.
2p=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
p=\frac{-24}{2}
Divide both sides by 2.
p=-12
Divide -24 by 2 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}