Solve for p
p = -\frac{12}{5} = -2\frac{2}{5} = -2.4
Solve for q
q = \frac{12}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
5p+10=5q-2
Use the distributive property to multiply 5 by p+2.
5p=5q-2-10
Subtract 10 from both sides.
5p=5q-12
Subtract 10 from -2 to get -12.
\frac{5p}{5}=\frac{5q-12}{5}
Divide both sides by 5.
p=\frac{5q-12}{5}
Dividing by 5 undoes the multiplication by 5.
p=q-\frac{12}{5}
Divide 5q-12 by 5.
5p+10=5q-2
Use the distributive property to multiply 5 by p+2.
5q-2=5p+10
Swap sides so that all variable terms are on the left hand side.
5q=5p+10+2
Add 2 to both sides.
5q=5p+12
Add 10 and 2 to get 12.
\frac{5q}{5}=\frac{5p+12}{5}
Divide both sides by 5.
q=\frac{5p+12}{5}
Dividing by 5 undoes the multiplication by 5.
q=p+\frac{12}{5}
Divide 5p+12 by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}