Solve for c
c=-\frac{16}{29}-\frac{40}{29}i\approx -0.551724138-1.379310345i
Share
Copied to clipboard
5ic-10=2\left(c-1\right)
Use the distributive property to multiply 5 by ic-2.
5ic-10=2c-2
Use the distributive property to multiply 2 by c-1.
5ic-10-2c=-2
Subtract 2c from both sides.
\left(-2+5i\right)c-10=-2
Combine 5ic and -2c to get \left(-2+5i\right)c.
\left(-2+5i\right)c=-2+10
Add 10 to both sides.
\left(-2+5i\right)c=8
Add -2 and 10 to get 8.
c=\frac{8}{-2+5i}
Divide both sides by -2+5i.
c=\frac{8\left(-2-5i\right)}{\left(-2+5i\right)\left(-2-5i\right)}
Multiply both numerator and denominator of \frac{8}{-2+5i} by the complex conjugate of the denominator, -2-5i.
c=\frac{8\left(-2-5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
c=\frac{8\left(-2-5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
c=\frac{8\left(-2\right)+8\times \left(-5i\right)}{29}
Multiply 8 times -2-5i.
c=\frac{-16-40i}{29}
Do the multiplications in 8\left(-2\right)+8\times \left(-5i\right).
c=-\frac{16}{29}-\frac{40}{29}i
Divide -16-40i by 29 to get -\frac{16}{29}-\frac{40}{29}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}