5 ( 4,5 - t ) ^ { 2 } = 320 t
Solve for t
t=4\sqrt{82}+36,5\approx 72.721540553
t=36,5-4\sqrt{82}\approx 0.278459447
Share
Copied to clipboard
5\left(20,25-9t+t^{2}\right)=320t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4,5-t\right)^{2}.
101,25-45t+5t^{2}=320t
Use the distributive property to multiply 5 by 20,25-9t+t^{2}.
101,25-45t+5t^{2}-320t=0
Subtract 320t from both sides.
101,25-365t+5t^{2}=0
Combine -45t and -320t to get -365t.
5t^{2}-365t+101,25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-365\right)±\sqrt{\left(-365\right)^{2}-4\times 5\times 101,25}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -365 for b, and 101,25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-365\right)±\sqrt{133225-4\times 5\times 101,25}}{2\times 5}
Square -365.
t=\frac{-\left(-365\right)±\sqrt{133225-20\times 101,25}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-365\right)±\sqrt{133225-2025}}{2\times 5}
Multiply -20 times 101,25.
t=\frac{-\left(-365\right)±\sqrt{131200}}{2\times 5}
Add 133225 to -2025.
t=\frac{-\left(-365\right)±40\sqrt{82}}{2\times 5}
Take the square root of 131200.
t=\frac{365±40\sqrt{82}}{2\times 5}
The opposite of -365 is 365.
t=\frac{365±40\sqrt{82}}{10}
Multiply 2 times 5.
t=\frac{40\sqrt{82}+365}{10}
Now solve the equation t=\frac{365±40\sqrt{82}}{10} when ± is plus. Add 365 to 40\sqrt{82}.
t=4\sqrt{82}+\frac{73}{2}
Divide 365+40\sqrt{82} by 10.
t=\frac{365-40\sqrt{82}}{10}
Now solve the equation t=\frac{365±40\sqrt{82}}{10} when ± is minus. Subtract 40\sqrt{82} from 365.
t=\frac{73}{2}-4\sqrt{82}
Divide 365-40\sqrt{82} by 10.
t=4\sqrt{82}+\frac{73}{2} t=\frac{73}{2}-4\sqrt{82}
The equation is now solved.
5\left(20,25-9t+t^{2}\right)=320t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4,5-t\right)^{2}.
101,25-45t+5t^{2}=320t
Use the distributive property to multiply 5 by 20,25-9t+t^{2}.
101,25-45t+5t^{2}-320t=0
Subtract 320t from both sides.
101,25-365t+5t^{2}=0
Combine -45t and -320t to get -365t.
-365t+5t^{2}=-101,25
Subtract 101,25 from both sides. Anything subtracted from zero gives its negation.
5t^{2}-365t=-101,25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}-365t}{5}=-\frac{101,25}{5}
Divide both sides by 5.
t^{2}+\left(-\frac{365}{5}\right)t=-\frac{101,25}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}-73t=-\frac{101,25}{5}
Divide -365 by 5.
t^{2}-73t=-20,25
Divide -101,25 by 5.
t^{2}-73t+\left(-\frac{73}{2}\right)^{2}=-20,25+\left(-\frac{73}{2}\right)^{2}
Divide -73, the coefficient of the x term, by 2 to get -\frac{73}{2}. Then add the square of -\frac{73}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-73t+\frac{5329}{4}=\frac{-81+5329}{4}
Square -\frac{73}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-73t+\frac{5329}{4}=1312
Add -20,25 to \frac{5329}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{73}{2}\right)^{2}=1312
Factor t^{2}-73t+\frac{5329}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{73}{2}\right)^{2}}=\sqrt{1312}
Take the square root of both sides of the equation.
t-\frac{73}{2}=4\sqrt{82} t-\frac{73}{2}=-4\sqrt{82}
Simplify.
t=4\sqrt{82}+\frac{73}{2} t=\frac{73}{2}-4\sqrt{82}
Add \frac{73}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}