Solve for x
x = \frac{16}{5} = 3\frac{1}{5} = 3.2
Graph
Share
Copied to clipboard
15x-35+2\left(9-2x\right)=8x-\left(2x+1\right)
Use the distributive property to multiply 5 by 3x-7.
15x-35+18-4x=8x-\left(2x+1\right)
Use the distributive property to multiply 2 by 9-2x.
15x-17-4x=8x-\left(2x+1\right)
Add -35 and 18 to get -17.
11x-17=8x-\left(2x+1\right)
Combine 15x and -4x to get 11x.
11x-17=8x-2x-1
To find the opposite of 2x+1, find the opposite of each term.
11x-17=6x-1
Combine 8x and -2x to get 6x.
11x-17-6x=-1
Subtract 6x from both sides.
5x-17=-1
Combine 11x and -6x to get 5x.
5x=-1+17
Add 17 to both sides.
5x=16
Add -1 and 17 to get 16.
x=\frac{16}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}