Solve for w
w\leq -3
Share
Copied to clipboard
15w+40\leq 7w+16
Use the distributive property to multiply 5 by 3w+8.
15w+40-7w\leq 16
Subtract 7w from both sides.
8w+40\leq 16
Combine 15w and -7w to get 8w.
8w\leq 16-40
Subtract 40 from both sides.
8w\leq -24
Subtract 40 from 16 to get -24.
w\leq \frac{-24}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
w\leq -3
Divide -24 by 8 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}