Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15+5x=\frac{1}{3}\left(-3-x\right)^{2}
Use the distributive property to multiply 5 by 3+x.
15+5x=\frac{1}{3}\left(9+6x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
15+5x=3+2x+\frac{1}{3}x^{2}
Use the distributive property to multiply \frac{1}{3} by 9+6x+x^{2}.
15+5x-3=2x+\frac{1}{3}x^{2}
Subtract 3 from both sides.
12+5x=2x+\frac{1}{3}x^{2}
Subtract 3 from 15 to get 12.
12+5x-2x=\frac{1}{3}x^{2}
Subtract 2x from both sides.
12+3x=\frac{1}{3}x^{2}
Combine 5x and -2x to get 3x.
12+3x-\frac{1}{3}x^{2}=0
Subtract \frac{1}{3}x^{2} from both sides.
-\frac{1}{3}x^{2}+3x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{3}\right)\times 12}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 3 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{3}\right)\times 12}}{2\left(-\frac{1}{3}\right)}
Square 3.
x=\frac{-3±\sqrt{9+\frac{4}{3}\times 12}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-3±\sqrt{9+16}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times 12.
x=\frac{-3±\sqrt{25}}{2\left(-\frac{1}{3}\right)}
Add 9 to 16.
x=\frac{-3±5}{2\left(-\frac{1}{3}\right)}
Take the square root of 25.
x=\frac{-3±5}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{2}{-\frac{2}{3}}
Now solve the equation x=\frac{-3±5}{-\frac{2}{3}} when ± is plus. Add -3 to 5.
x=-3
Divide 2 by -\frac{2}{3} by multiplying 2 by the reciprocal of -\frac{2}{3}.
x=-\frac{8}{-\frac{2}{3}}
Now solve the equation x=\frac{-3±5}{-\frac{2}{3}} when ± is minus. Subtract 5 from -3.
x=12
Divide -8 by -\frac{2}{3} by multiplying -8 by the reciprocal of -\frac{2}{3}.
x=-3 x=12
The equation is now solved.
15+5x=\frac{1}{3}\left(-3-x\right)^{2}
Use the distributive property to multiply 5 by 3+x.
15+5x=\frac{1}{3}\left(9+6x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
15+5x=3+2x+\frac{1}{3}x^{2}
Use the distributive property to multiply \frac{1}{3} by 9+6x+x^{2}.
15+5x-2x=3+\frac{1}{3}x^{2}
Subtract 2x from both sides.
15+3x=3+\frac{1}{3}x^{2}
Combine 5x and -2x to get 3x.
15+3x-\frac{1}{3}x^{2}=3
Subtract \frac{1}{3}x^{2} from both sides.
3x-\frac{1}{3}x^{2}=3-15
Subtract 15 from both sides.
3x-\frac{1}{3}x^{2}=-12
Subtract 15 from 3 to get -12.
-\frac{1}{3}x^{2}+3x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{3}x^{2}+3x}{-\frac{1}{3}}=-\frac{12}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\frac{3}{-\frac{1}{3}}x=-\frac{12}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}-9x=-\frac{12}{-\frac{1}{3}}
Divide 3 by -\frac{1}{3} by multiplying 3 by the reciprocal of -\frac{1}{3}.
x^{2}-9x=36
Divide -12 by -\frac{1}{3} by multiplying -12 by the reciprocal of -\frac{1}{3}.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=36+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=36+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{225}{4}
Add 36 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{225}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{15}{2} x-\frac{9}{2}=-\frac{15}{2}
Simplify.
x=12 x=-3
Add \frac{9}{2} to both sides of the equation.