Solve for x
x = -\frac{41}{2} = -20\frac{1}{2} = -20.5
Graph
Share
Copied to clipboard
10x-15-2\left(4x-7\right)=4\left(x+10\right)
Use the distributive property to multiply 5 by 2x-3.
10x-15-8x+14=4\left(x+10\right)
Use the distributive property to multiply -2 by 4x-7.
2x-15+14=4\left(x+10\right)
Combine 10x and -8x to get 2x.
2x-1=4\left(x+10\right)
Add -15 and 14 to get -1.
2x-1=4x+40
Use the distributive property to multiply 4 by x+10.
2x-1-4x=40
Subtract 4x from both sides.
-2x-1=40
Combine 2x and -4x to get -2x.
-2x=40+1
Add 1 to both sides.
-2x=41
Add 40 and 1 to get 41.
x=\frac{41}{-2}
Divide both sides by -2.
x=-\frac{41}{2}
Fraction \frac{41}{-2} can be rewritten as -\frac{41}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}