Solve for g
g\geq 5
Share
Copied to clipboard
10g-15-6g\geq -2\left(g-6\right)+3
Use the distributive property to multiply 5 by 2g-3.
4g-15\geq -2\left(g-6\right)+3
Combine 10g and -6g to get 4g.
4g-15\geq -2g+12+3
Use the distributive property to multiply -2 by g-6.
4g-15\geq -2g+15
Add 12 and 3 to get 15.
4g-15+2g\geq 15
Add 2g to both sides.
6g-15\geq 15
Combine 4g and 2g to get 6g.
6g\geq 15+15
Add 15 to both sides.
6g\geq 30
Add 15 and 15 to get 30.
g\geq \frac{30}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
g\geq 5
Divide 30 by 6 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}