Solve for b
b=-1
Share
Copied to clipboard
5-15b=11-3\left(2b-1\right)
Use the distributive property to multiply 5 by 1-3b.
5-15b=11-6b+3
Use the distributive property to multiply -3 by 2b-1.
5-15b=14-6b
Add 11 and 3 to get 14.
5-15b+6b=14
Add 6b to both sides.
5-9b=14
Combine -15b and 6b to get -9b.
-9b=14-5
Subtract 5 from both sides.
-9b=9
Subtract 5 from 14 to get 9.
b=\frac{9}{-9}
Divide both sides by -9.
b=-1
Divide 9 by -9 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}