Solve for x
x\leq 19
Graph
Share
Copied to clipboard
50\left(\frac{x}{5}+\frac{10}{2}\right)\geq 20x+2\times 30
Multiply both sides of the equation by 10, the least common multiple of 5,2. Since 10 is positive, the inequality direction remains the same.
50\left(\frac{x}{5}+5\right)\geq 20x+2\times 30
Divide 10 by 2 to get 5.
50\times \frac{x}{5}+250\geq 20x+2\times 30
Use the distributive property to multiply 50 by \frac{x}{5}+5.
10x+250\geq 20x+2\times 30
Cancel out 5, the greatest common factor in 50 and 5.
10x+250\geq 20x+60
Multiply 2 and 30 to get 60.
10x+250-20x\geq 60
Subtract 20x from both sides.
-10x+250\geq 60
Combine 10x and -20x to get -10x.
-10x\geq 60-250
Subtract 250 from both sides.
-10x\geq -190
Subtract 250 from 60 to get -190.
x\leq \frac{-190}{-10}
Divide both sides by -10. Since -10 is negative, the inequality direction is changed.
x\leq 19
Divide -190 by -10 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}