Verify
false
Share
Copied to clipboard
5\times \frac{41}{6}+6\times \frac{82}{4}-81=7\times \frac{81}{4}
Reduce the fraction \frac{82}{12} to lowest terms by extracting and canceling out 2.
\frac{5\times 41}{6}+6\times \frac{82}{4}-81=7\times \frac{81}{4}
Express 5\times \frac{41}{6} as a single fraction.
\frac{205}{6}+6\times \frac{82}{4}-81=7\times \frac{81}{4}
Multiply 5 and 41 to get 205.
\frac{205}{6}+6\times \frac{41}{2}-81=7\times \frac{81}{4}
Reduce the fraction \frac{82}{4} to lowest terms by extracting and canceling out 2.
\frac{205}{6}+\frac{6\times 41}{2}-81=7\times \frac{81}{4}
Express 6\times \frac{41}{2} as a single fraction.
\frac{205}{6}+\frac{246}{2}-81=7\times \frac{81}{4}
Multiply 6 and 41 to get 246.
\frac{205}{6}+123-81=7\times \frac{81}{4}
Divide 246 by 2 to get 123.
\frac{205}{6}+\frac{738}{6}-81=7\times \frac{81}{4}
Convert 123 to fraction \frac{738}{6}.
\frac{205+738}{6}-81=7\times \frac{81}{4}
Since \frac{205}{6} and \frac{738}{6} have the same denominator, add them by adding their numerators.
\frac{943}{6}-81=7\times \frac{81}{4}
Add 205 and 738 to get 943.
\frac{943}{6}-\frac{486}{6}=7\times \frac{81}{4}
Convert 81 to fraction \frac{486}{6}.
\frac{943-486}{6}=7\times \frac{81}{4}
Since \frac{943}{6} and \frac{486}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{457}{6}=7\times \frac{81}{4}
Subtract 486 from 943 to get 457.
\frac{457}{6}=\frac{7\times 81}{4}
Express 7\times \frac{81}{4} as a single fraction.
\frac{457}{6}=\frac{567}{4}
Multiply 7 and 81 to get 567.
\frac{914}{12}=\frac{1701}{12}
Least common multiple of 6 and 4 is 12. Convert \frac{457}{6} and \frac{567}{4} to fractions with denominator 12.
\text{false}
Compare \frac{914}{12} and \frac{1701}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}