Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

5\times \left(\frac{5^{1}}{5^{-1}\times 5^{4}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
5\times \left(\frac{5^{1}}{5^{3}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{3} as 5^{1}\times 5^{2}. Cancel out 5^{1} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{4}}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{4}}{5^{6}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{25}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
5\times 625=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
3125=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Multiply 5 and 625 to get 3125.
3125=\left(\frac{1}{25}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
3125=625\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Compare 3125 and 625.
\text{false}\text{ and }\left(\frac{1}{25}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
\text{false}\text{ and }625=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }625=\left(\frac{1}{25}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
\text{false}\text{ and }625=625
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }\text{true}
Compare 625 and 625.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.