Verify
false
Share
Copied to clipboard
5\times \left(\frac{5^{1}}{5^{-1}\times 5^{4}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
5\times \left(\frac{5^{1}}{5^{3}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{3} as 5^{1}\times 5^{2}. Cancel out 5^{1} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{2}\times 5^{4}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{3}\times 5}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{4}}{5^{2}\times 5^{4}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{5^{4}}{5^{6}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{5^{4}}{5^{6}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Rewrite 5^{6} as 5^{4}\times 5^{2}. Cancel out 5^{4} in both numerator and denominator.
5\times \left(\frac{1}{25}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
5\times 625=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
3125=\left(\frac{1}{5^{2}}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Multiply 5 and 625 to get 3125.
3125=\left(\frac{1}{25}\right)^{-2}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
3125=625\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }\left(\frac{1}{5^{2}}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Compare 3125 and 625.
\text{false}\text{ and }\left(\frac{1}{25}\right)^{-2}=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
\text{false}\text{ and }625=\left(\frac{1}{5^{2}}\right)^{-2}
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }625=\left(\frac{1}{25}\right)^{-2}
Calculate 5 to the power of 2 and get 25.
\text{false}\text{ and }625=625
Calculate \frac{1}{25} to the power of -2 and get 625.
\text{false}\text{ and }\text{true}
Compare 625 and 625.
\text{false}
The conjunction of \text{false} and \text{true} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}