Evaluate
\frac{1789}{56}\approx 31.946428571
Factor
\frac{1789}{2 ^ {3} \cdot 7} = 31\frac{53}{56} = 31.946428571428573
Share
Copied to clipboard
5\left(\frac{1}{2}+\frac{12}{2}\right)-\frac{1}{8}\left(\frac{3}{7}+4\right)
Convert 6 to fraction \frac{12}{2}.
5\times \frac{1+12}{2}-\frac{1}{8}\left(\frac{3}{7}+4\right)
Since \frac{1}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
5\times \frac{13}{2}-\frac{1}{8}\left(\frac{3}{7}+4\right)
Add 1 and 12 to get 13.
\frac{5\times 13}{2}-\frac{1}{8}\left(\frac{3}{7}+4\right)
Express 5\times \frac{13}{2} as a single fraction.
\frac{65}{2}-\frac{1}{8}\left(\frac{3}{7}+4\right)
Multiply 5 and 13 to get 65.
\frac{65}{2}-\frac{1}{8}\left(\frac{3}{7}+\frac{28}{7}\right)
Convert 4 to fraction \frac{28}{7}.
\frac{65}{2}-\frac{1}{8}\times \frac{3+28}{7}
Since \frac{3}{7} and \frac{28}{7} have the same denominator, add them by adding their numerators.
\frac{65}{2}-\frac{1}{8}\times \frac{31}{7}
Add 3 and 28 to get 31.
\frac{65}{2}-\frac{1\times 31}{8\times 7}
Multiply \frac{1}{8} times \frac{31}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{65}{2}-\frac{31}{56}
Do the multiplications in the fraction \frac{1\times 31}{8\times 7}.
\frac{1820}{56}-\frac{31}{56}
Least common multiple of 2 and 56 is 56. Convert \frac{65}{2} and \frac{31}{56} to fractions with denominator 56.
\frac{1820-31}{56}
Since \frac{1820}{56} and \frac{31}{56} have the same denominator, subtract them by subtracting their numerators.
\frac{1789}{56}
Subtract 31 from 1820 to get 1789.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}