Solve for y
y=\frac{3\sqrt{195}}{5}+9\approx 17.378544026
y=-\frac{3\sqrt{195}}{5}+9\approx 0.621455974
Graph
Share
Copied to clipboard
5y^{2}-90y+54=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 5\times 54}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -90 for b, and 54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-90\right)±\sqrt{8100-4\times 5\times 54}}{2\times 5}
Square -90.
y=\frac{-\left(-90\right)±\sqrt{8100-20\times 54}}{2\times 5}
Multiply -4 times 5.
y=\frac{-\left(-90\right)±\sqrt{8100-1080}}{2\times 5}
Multiply -20 times 54.
y=\frac{-\left(-90\right)±\sqrt{7020}}{2\times 5}
Add 8100 to -1080.
y=\frac{-\left(-90\right)±6\sqrt{195}}{2\times 5}
Take the square root of 7020.
y=\frac{90±6\sqrt{195}}{2\times 5}
The opposite of -90 is 90.
y=\frac{90±6\sqrt{195}}{10}
Multiply 2 times 5.
y=\frac{6\sqrt{195}+90}{10}
Now solve the equation y=\frac{90±6\sqrt{195}}{10} when ± is plus. Add 90 to 6\sqrt{195}.
y=\frac{3\sqrt{195}}{5}+9
Divide 90+6\sqrt{195} by 10.
y=\frac{90-6\sqrt{195}}{10}
Now solve the equation y=\frac{90±6\sqrt{195}}{10} when ± is minus. Subtract 6\sqrt{195} from 90.
y=-\frac{3\sqrt{195}}{5}+9
Divide 90-6\sqrt{195} by 10.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
The equation is now solved.
5y^{2}-90y+54=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5y^{2}-90y+54-54=-54
Subtract 54 from both sides of the equation.
5y^{2}-90y=-54
Subtracting 54 from itself leaves 0.
\frac{5y^{2}-90y}{5}=-\frac{54}{5}
Divide both sides by 5.
y^{2}+\left(-\frac{90}{5}\right)y=-\frac{54}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}-18y=-\frac{54}{5}
Divide -90 by 5.
y^{2}-18y+\left(-9\right)^{2}=-\frac{54}{5}+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-18y+81=-\frac{54}{5}+81
Square -9.
y^{2}-18y+81=\frac{351}{5}
Add -\frac{54}{5} to 81.
\left(y-9\right)^{2}=\frac{351}{5}
Factor y^{2}-18y+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-9\right)^{2}}=\sqrt{\frac{351}{5}}
Take the square root of both sides of the equation.
y-9=\frac{3\sqrt{195}}{5} y-9=-\frac{3\sqrt{195}}{5}
Simplify.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}