Evaluate
5x^{4}-2x^{2}+2-\frac{18}{x}
Factor
\frac{5x^{5}-2x^{3}+2x-18}{x}
Graph
Share
Copied to clipboard
5x^{4}-2x^{2}-\frac{3\times 6}{x^{2}}x+2
Express \frac{3}{x^{2}}\times 6 as a single fraction.
5x^{4}-2x^{2}-\frac{3\times 6x}{x^{2}}+2
Express \frac{3\times 6}{x^{2}}x as a single fraction.
5x^{4}-2x^{2}-\frac{3\times 6}{x}+2
Cancel out x in both numerator and denominator.
5x^{4}-2x^{2}-\frac{18}{x}+2
Multiply 3 and 6 to get 18.
\frac{\left(5x^{4}-2x^{2}\right)x}{x}-\frac{18}{x}+2
To add or subtract expressions, expand them to make their denominators the same. Multiply 5x^{4}-2x^{2} times \frac{x}{x}.
\frac{\left(5x^{4}-2x^{2}\right)x-18}{x}+2
Since \frac{\left(5x^{4}-2x^{2}\right)x}{x} and \frac{18}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{5}-2x^{3}-18}{x}+2
Do the multiplications in \left(5x^{4}-2x^{2}\right)x-18.
\frac{5x^{5}-2x^{3}-18}{x}+\frac{2x}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{5x^{5}-2x^{3}-18+2x}{x}
Since \frac{5x^{5}-2x^{3}-18}{x} and \frac{2x}{x} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}