Solve for Q
\left\{\begin{matrix}\\Q=-\frac{x\left(2-x\right)\left(7x+3\right)}{14}\text{, }&\text{unconditionally}\\Q\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
6x^{2}+4x+14Qx=7x^{4}-6x^{3}+4x-5x^{3}
Subtract 5x^{3} from both sides.
6x^{2}+4x+14Qx=7x^{4}-11x^{3}+4x
Combine -6x^{3} and -5x^{3} to get -11x^{3}.
4x+14Qx=7x^{4}-11x^{3}+4x-6x^{2}
Subtract 6x^{2} from both sides.
14Qx=7x^{4}-11x^{3}+4x-6x^{2}-4x
Subtract 4x from both sides.
14Qx=7x^{4}-11x^{3}-6x^{2}
Combine 4x and -4x to get 0.
14xQ=7x^{4}-11x^{3}-6x^{2}
The equation is in standard form.
\frac{14xQ}{14x}=\frac{\left(x-2\right)\left(7x+3\right)x^{2}}{14x}
Divide both sides by 14x.
Q=\frac{\left(x-2\right)\left(7x+3\right)x^{2}}{14x}
Dividing by 14x undoes the multiplication by 14x.
Q=\frac{x\left(x-2\right)\left(7x+3\right)}{14}
Divide \left(-2+x\right)\left(3+7x\right)x^{2} by 14x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}