Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-8 ab=5\left(-4\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-10 b=2
The solution is the pair that gives sum -8.
\left(5x^{2}-10x\right)+\left(2x-4\right)
Rewrite 5x^{2}-8x-4 as \left(5x^{2}-10x\right)+\left(2x-4\right).
5x\left(x-2\right)+2\left(x-2\right)
Factor out 5x in the first and 2 in the second group.
\left(x-2\right)\left(5x+2\right)
Factor out common term x-2 by using distributive property.
5x^{2}-8x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\left(-4\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\left(-4\right)}}{2\times 5}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-20\left(-4\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 5}
Multiply -20 times -4.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 5}
Add 64 to 80.
x=\frac{-\left(-8\right)±12}{2\times 5}
Take the square root of 144.
x=\frac{8±12}{2\times 5}
The opposite of -8 is 8.
x=\frac{8±12}{10}
Multiply 2 times 5.
x=\frac{20}{10}
Now solve the equation x=\frac{8±12}{10} when ± is plus. Add 8 to 12.
x=2
Divide 20 by 10.
x=-\frac{4}{10}
Now solve the equation x=\frac{8±12}{10} when ± is minus. Subtract 12 from 8.
x=-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
5x^{2}-8x-4=5\left(x-2\right)\left(x-\left(-\frac{2}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{2}{5} for x_{2}.
5x^{2}-8x-4=5\left(x-2\right)\left(x+\frac{2}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}-8x-4=5\left(x-2\right)\times \frac{5x+2}{5}
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}-8x-4=\left(x-2\right)\left(5x+2\right)
Cancel out 5, the greatest common factor in 5 and 5.