Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-40x+76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 76}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -40 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 76}}{2\times 5}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 76}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-40\right)±\sqrt{1600-1520}}{2\times 5}
Multiply -20 times 76.
x=\frac{-\left(-40\right)±\sqrt{80}}{2\times 5}
Add 1600 to -1520.
x=\frac{-\left(-40\right)±4\sqrt{5}}{2\times 5}
Take the square root of 80.
x=\frac{40±4\sqrt{5}}{2\times 5}
The opposite of -40 is 40.
x=\frac{40±4\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{5}+40}{10}
Now solve the equation x=\frac{40±4\sqrt{5}}{10} when ± is plus. Add 40 to 4\sqrt{5}.
x=\frac{2\sqrt{5}}{5}+4
Divide 40+4\sqrt{5} by 10.
x=\frac{40-4\sqrt{5}}{10}
Now solve the equation x=\frac{40±4\sqrt{5}}{10} when ± is minus. Subtract 4\sqrt{5} from 40.
x=-\frac{2\sqrt{5}}{5}+4
Divide 40-4\sqrt{5} by 10.
x=\frac{2\sqrt{5}}{5}+4 x=-\frac{2\sqrt{5}}{5}+4
The equation is now solved.
5x^{2}-40x+76=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-40x+76-76=-76
Subtract 76 from both sides of the equation.
5x^{2}-40x=-76
Subtracting 76 from itself leaves 0.
\frac{5x^{2}-40x}{5}=-\frac{76}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{76}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-8x=-\frac{76}{5}
Divide -40 by 5.
x^{2}-8x+\left(-4\right)^{2}=-\frac{76}{5}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{76}{5}+16
Square -4.
x^{2}-8x+16=\frac{4}{5}
Add -\frac{76}{5} to 16.
\left(x-4\right)^{2}=\frac{4}{5}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{4}{5}}
Take the square root of both sides of the equation.
x-4=\frac{2\sqrt{5}}{5} x-4=-\frac{2\sqrt{5}}{5}
Simplify.
x=\frac{2\sqrt{5}}{5}+4 x=-\frac{2\sqrt{5}}{5}+4
Add 4 to both sides of the equation.