Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-32x=48
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}-32x-48=48-48
Subtract 48 from both sides of the equation.
5x^{2}-32x-48=0
Subtracting 48 from itself leaves 0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 5\left(-48\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -32 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 5\left(-48\right)}}{2\times 5}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-20\left(-48\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-32\right)±\sqrt{1024+960}}{2\times 5}
Multiply -20 times -48.
x=\frac{-\left(-32\right)±\sqrt{1984}}{2\times 5}
Add 1024 to 960.
x=\frac{-\left(-32\right)±8\sqrt{31}}{2\times 5}
Take the square root of 1984.
x=\frac{32±8\sqrt{31}}{2\times 5}
The opposite of -32 is 32.
x=\frac{32±8\sqrt{31}}{10}
Multiply 2 times 5.
x=\frac{8\sqrt{31}+32}{10}
Now solve the equation x=\frac{32±8\sqrt{31}}{10} when ± is plus. Add 32 to 8\sqrt{31}.
x=\frac{4\sqrt{31}+16}{5}
Divide 32+8\sqrt{31} by 10.
x=\frac{32-8\sqrt{31}}{10}
Now solve the equation x=\frac{32±8\sqrt{31}}{10} when ± is minus. Subtract 8\sqrt{31} from 32.
x=\frac{16-4\sqrt{31}}{5}
Divide 32-8\sqrt{31} by 10.
x=\frac{4\sqrt{31}+16}{5} x=\frac{16-4\sqrt{31}}{5}
The equation is now solved.
5x^{2}-32x=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-32x}{5}=\frac{48}{5}
Divide both sides by 5.
x^{2}-\frac{32}{5}x=\frac{48}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{32}{5}x+\left(-\frac{16}{5}\right)^{2}=\frac{48}{5}+\left(-\frac{16}{5}\right)^{2}
Divide -\frac{32}{5}, the coefficient of the x term, by 2 to get -\frac{16}{5}. Then add the square of -\frac{16}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{5}x+\frac{256}{25}=\frac{48}{5}+\frac{256}{25}
Square -\frac{16}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{5}x+\frac{256}{25}=\frac{496}{25}
Add \frac{48}{5} to \frac{256}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{5}\right)^{2}=\frac{496}{25}
Factor x^{2}-\frac{32}{5}x+\frac{256}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{5}\right)^{2}}=\sqrt{\frac{496}{25}}
Take the square root of both sides of the equation.
x-\frac{16}{5}=\frac{4\sqrt{31}}{5} x-\frac{16}{5}=-\frac{4\sqrt{31}}{5}
Simplify.
x=\frac{4\sqrt{31}+16}{5} x=\frac{16-4\sqrt{31}}{5}
Add \frac{16}{5} to both sides of the equation.