Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}-6x+8\right)
Factor out 5.
a+b=-6 ab=1\times 8=8
Consider x^{2}-6x+8. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-4 b=-2
The solution is the pair that gives sum -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Rewrite x^{2}-6x+8 as \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Factor out x in the first and -2 in the second group.
\left(x-4\right)\left(x-2\right)
Factor out common term x-4 by using distributive property.
5\left(x-4\right)\left(x-2\right)
Rewrite the complete factored expression.
5x^{2}-30x+40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 5\times 40}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 5\times 40}}{2\times 5}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-20\times 40}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-30\right)±\sqrt{900-800}}{2\times 5}
Multiply -20 times 40.
x=\frac{-\left(-30\right)±\sqrt{100}}{2\times 5}
Add 900 to -800.
x=\frac{-\left(-30\right)±10}{2\times 5}
Take the square root of 100.
x=\frac{30±10}{2\times 5}
The opposite of -30 is 30.
x=\frac{30±10}{10}
Multiply 2 times 5.
x=\frac{40}{10}
Now solve the equation x=\frac{30±10}{10} when ± is plus. Add 30 to 10.
x=4
Divide 40 by 10.
x=\frac{20}{10}
Now solve the equation x=\frac{30±10}{10} when ± is minus. Subtract 10 from 30.
x=2
Divide 20 by 10.
5x^{2}-30x+40=5\left(x-4\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and 2 for x_{2}.