Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-25x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\left(-12\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -25 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 5\left(-12\right)}}{2\times 5}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-20\left(-12\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-25\right)±\sqrt{625+240}}{2\times 5}
Multiply -20 times -12.
x=\frac{-\left(-25\right)±\sqrt{865}}{2\times 5}
Add 625 to 240.
x=\frac{25±\sqrt{865}}{2\times 5}
The opposite of -25 is 25.
x=\frac{25±\sqrt{865}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{865}+25}{10}
Now solve the equation x=\frac{25±\sqrt{865}}{10} when ± is plus. Add 25 to \sqrt{865}.
x=\frac{\sqrt{865}}{10}+\frac{5}{2}
Divide 25+\sqrt{865} by 10.
x=\frac{25-\sqrt{865}}{10}
Now solve the equation x=\frac{25±\sqrt{865}}{10} when ± is minus. Subtract \sqrt{865} from 25.
x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Divide 25-\sqrt{865} by 10.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
The equation is now solved.
5x^{2}-25x-12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-25x-12-\left(-12\right)=-\left(-12\right)
Add 12 to both sides of the equation.
5x^{2}-25x=-\left(-12\right)
Subtracting -12 from itself leaves 0.
5x^{2}-25x=12
Subtract -12 from 0.
\frac{5x^{2}-25x}{5}=\frac{12}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{12}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-5x=\frac{12}{5}
Divide -25 by 5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{12}{5}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{12}{5}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{173}{20}
Add \frac{12}{5} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{173}{20}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{173}{20}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{865}}{10} x-\frac{5}{2}=-\frac{\sqrt{865}}{10}
Simplify.
x=\frac{\sqrt{865}}{10}+\frac{5}{2} x=-\frac{\sqrt{865}}{10}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.