Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-24x+156=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 5\times 156}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -24 for b, and 156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 5\times 156}}{2\times 5}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-20\times 156}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-24\right)±\sqrt{576-3120}}{2\times 5}
Multiply -20 times 156.
x=\frac{-\left(-24\right)±\sqrt{-2544}}{2\times 5}
Add 576 to -3120.
x=\frac{-\left(-24\right)±4\sqrt{159}i}{2\times 5}
Take the square root of -2544.
x=\frac{24±4\sqrt{159}i}{2\times 5}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{159}i}{10}
Multiply 2 times 5.
x=\frac{24+4\sqrt{159}i}{10}
Now solve the equation x=\frac{24±4\sqrt{159}i}{10} when ± is plus. Add 24 to 4i\sqrt{159}.
x=\frac{12+2\sqrt{159}i}{5}
Divide 24+4i\sqrt{159} by 10.
x=\frac{-4\sqrt{159}i+24}{10}
Now solve the equation x=\frac{24±4\sqrt{159}i}{10} when ± is minus. Subtract 4i\sqrt{159} from 24.
x=\frac{-2\sqrt{159}i+12}{5}
Divide 24-4i\sqrt{159} by 10.
x=\frac{12+2\sqrt{159}i}{5} x=\frac{-2\sqrt{159}i+12}{5}
The equation is now solved.
5x^{2}-24x+156=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-24x+156-156=-156
Subtract 156 from both sides of the equation.
5x^{2}-24x=-156
Subtracting 156 from itself leaves 0.
\frac{5x^{2}-24x}{5}=-\frac{156}{5}
Divide both sides by 5.
x^{2}-\frac{24}{5}x=-\frac{156}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{24}{5}x+\left(-\frac{12}{5}\right)^{2}=-\frac{156}{5}+\left(-\frac{12}{5}\right)^{2}
Divide -\frac{24}{5}, the coefficient of the x term, by 2 to get -\frac{12}{5}. Then add the square of -\frac{12}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{5}x+\frac{144}{25}=-\frac{156}{5}+\frac{144}{25}
Square -\frac{12}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{5}x+\frac{144}{25}=-\frac{636}{25}
Add -\frac{156}{5} to \frac{144}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{12}{5}\right)^{2}=-\frac{636}{25}
Factor x^{2}-\frac{24}{5}x+\frac{144}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{5}\right)^{2}}=\sqrt{-\frac{636}{25}}
Take the square root of both sides of the equation.
x-\frac{12}{5}=\frac{2\sqrt{159}i}{5} x-\frac{12}{5}=-\frac{2\sqrt{159}i}{5}
Simplify.
x=\frac{12+2\sqrt{159}i}{5} x=\frac{-2\sqrt{159}i+12}{5}
Add \frac{12}{5} to both sides of the equation.