Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-23x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 5\times 15}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-23\right)±\sqrt{529-4\times 5\times 15}}{2\times 5}
Square -23.
x=\frac{-\left(-23\right)±\sqrt{529-20\times 15}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-23\right)±\sqrt{529-300}}{2\times 5}
Multiply -20 times 15.
x=\frac{-\left(-23\right)±\sqrt{229}}{2\times 5}
Add 529 to -300.
x=\frac{23±\sqrt{229}}{2\times 5}
The opposite of -23 is 23.
x=\frac{23±\sqrt{229}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{229}+23}{10}
Now solve the equation x=\frac{23±\sqrt{229}}{10} when ± is plus. Add 23 to \sqrt{229}.
x=\frac{23-\sqrt{229}}{10}
Now solve the equation x=\frac{23±\sqrt{229}}{10} when ± is minus. Subtract \sqrt{229} from 23.
5x^{2}-23x+15=5\left(x-\frac{\sqrt{229}+23}{10}\right)\left(x-\frac{23-\sqrt{229}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{23+\sqrt{229}}{10} for x_{1} and \frac{23-\sqrt{229}}{10} for x_{2}.