Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+3x-2
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=5\left(-2\right)=-10
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=-2 b=5
The solution is the pair that gives sum 3.
\left(5x^{2}-2x\right)+\left(5x-2\right)
Rewrite 5x^{2}+3x-2 as \left(5x^{2}-2x\right)+\left(5x-2\right).
x\left(5x-2\right)+5x-2
Factor out x in 5x^{2}-2x.
\left(5x-2\right)\left(x+1\right)
Factor out common term 5x-2 by using distributive property.
5x^{2}+3x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
Square 3.
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-3±\sqrt{9+40}}{2\times 5}
Multiply -20 times -2.
x=\frac{-3±\sqrt{49}}{2\times 5}
Add 9 to 40.
x=\frac{-3±7}{2\times 5}
Take the square root of 49.
x=\frac{-3±7}{10}
Multiply 2 times 5.
x=\frac{4}{10}
Now solve the equation x=\frac{-3±7}{10} when ± is plus. Add -3 to 7.
x=\frac{2}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{10}{10}
Now solve the equation x=\frac{-3±7}{10} when ± is minus. Subtract 7 from -3.
x=-1
Divide -10 by 10.
5x^{2}+3x-2=5\left(x-\frac{2}{5}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{5} for x_{1} and -1 for x_{2}.
5x^{2}+3x-2=5\left(x-\frac{2}{5}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}+3x-2=5\times \frac{5x-2}{5}\left(x+1\right)
Subtract \frac{2}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}+3x-2=\left(5x-2\right)\left(x+1\right)
Cancel out 5, the greatest common factor in 5 and 5.