Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-13x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 5\times 7}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -13 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 5\times 7}}{2\times 5}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-20\times 7}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-13\right)±\sqrt{169-140}}{2\times 5}
Multiply -20 times 7.
x=\frac{-\left(-13\right)±\sqrt{29}}{2\times 5}
Add 169 to -140.
x=\frac{13±\sqrt{29}}{2\times 5}
The opposite of -13 is 13.
x=\frac{13±\sqrt{29}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{29}+13}{10}
Now solve the equation x=\frac{13±\sqrt{29}}{10} when ± is plus. Add 13 to \sqrt{29}.
x=\frac{13-\sqrt{29}}{10}
Now solve the equation x=\frac{13±\sqrt{29}}{10} when ± is minus. Subtract \sqrt{29} from 13.
x=\frac{\sqrt{29}+13}{10} x=\frac{13-\sqrt{29}}{10}
The equation is now solved.
5x^{2}-13x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-13x+7-7=-7
Subtract 7 from both sides of the equation.
5x^{2}-13x=-7
Subtracting 7 from itself leaves 0.
\frac{5x^{2}-13x}{5}=-\frac{7}{5}
Divide both sides by 5.
x^{2}-\frac{13}{5}x=-\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{13}{5}x+\left(-\frac{13}{10}\right)^{2}=-\frac{7}{5}+\left(-\frac{13}{10}\right)^{2}
Divide -\frac{13}{5}, the coefficient of the x term, by 2 to get -\frac{13}{10}. Then add the square of -\frac{13}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{5}x+\frac{169}{100}=-\frac{7}{5}+\frac{169}{100}
Square -\frac{13}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{5}x+\frac{169}{100}=\frac{29}{100}
Add -\frac{7}{5} to \frac{169}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{10}\right)^{2}=\frac{29}{100}
Factor x^{2}-\frac{13}{5}x+\frac{169}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{10}\right)^{2}}=\sqrt{\frac{29}{100}}
Take the square root of both sides of the equation.
x-\frac{13}{10}=\frac{\sqrt{29}}{10} x-\frac{13}{10}=-\frac{\sqrt{29}}{10}
Simplify.
x=\frac{\sqrt{29}+13}{10} x=\frac{13-\sqrt{29}}{10}
Add \frac{13}{10} to both sides of the equation.