Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-12x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 3}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 3}}{2\times 5}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\times 3}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-12\right)±\sqrt{144-60}}{2\times 5}
Multiply -20 times 3.
x=\frac{-\left(-12\right)±\sqrt{84}}{2\times 5}
Add 144 to -60.
x=\frac{-\left(-12\right)±2\sqrt{21}}{2\times 5}
Take the square root of 84.
x=\frac{12±2\sqrt{21}}{2\times 5}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{21}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{21}+12}{10}
Now solve the equation x=\frac{12±2\sqrt{21}}{10} when ± is plus. Add 12 to 2\sqrt{21}.
x=\frac{\sqrt{21}+6}{5}
Divide 12+2\sqrt{21} by 10.
x=\frac{12-2\sqrt{21}}{10}
Now solve the equation x=\frac{12±2\sqrt{21}}{10} when ± is minus. Subtract 2\sqrt{21} from 12.
x=\frac{6-\sqrt{21}}{5}
Divide 12-2\sqrt{21} by 10.
5x^{2}-12x+3=5\left(x-\frac{\sqrt{21}+6}{5}\right)\left(x-\frac{6-\sqrt{21}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{6+\sqrt{21}}{5} for x_{1} and \frac{6-\sqrt{21}}{5} for x_{2}.