Solve for x
x=5
x=-5
Graph
Share
Copied to clipboard
x^{2}-25=0
Divide both sides by 5.
\left(x-5\right)\left(x+5\right)=0
Consider x^{2}-25. Rewrite x^{2}-25 as x^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
To find equation solutions, solve x-5=0 and x+5=0.
5x^{2}=125
Add 125 to both sides. Anything plus zero gives itself.
x^{2}=\frac{125}{5}
Divide both sides by 5.
x^{2}=25
Divide 125 by 5 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
5x^{2}-125=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-125\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-125\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-125\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{2500}}{2\times 5}
Multiply -20 times -125.
x=\frac{0±50}{2\times 5}
Take the square root of 2500.
x=\frac{0±50}{10}
Multiply 2 times 5.
x=5
Now solve the equation x=\frac{0±50}{10} when ± is plus. Divide 50 by 10.
x=-5
Now solve the equation x=\frac{0±50}{10} when ± is minus. Divide -50 by 10.
x=5 x=-5
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}