Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-113x+430=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-113\right)±\sqrt{\left(-113\right)^{2}-4\times 5\times 430}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -113 for b, and 430 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-113\right)±\sqrt{12769-4\times 5\times 430}}{2\times 5}
Square -113.
x=\frac{-\left(-113\right)±\sqrt{12769-20\times 430}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-113\right)±\sqrt{12769-8600}}{2\times 5}
Multiply -20 times 430.
x=\frac{-\left(-113\right)±\sqrt{4169}}{2\times 5}
Add 12769 to -8600.
x=\frac{113±\sqrt{4169}}{2\times 5}
The opposite of -113 is 113.
x=\frac{113±\sqrt{4169}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{4169}+113}{10}
Now solve the equation x=\frac{113±\sqrt{4169}}{10} when ± is plus. Add 113 to \sqrt{4169}.
x=\frac{113-\sqrt{4169}}{10}
Now solve the equation x=\frac{113±\sqrt{4169}}{10} when ± is minus. Subtract \sqrt{4169} from 113.
x=\frac{\sqrt{4169}+113}{10} x=\frac{113-\sqrt{4169}}{10}
The equation is now solved.
5x^{2}-113x+430=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-113x+430-430=-430
Subtract 430 from both sides of the equation.
5x^{2}-113x=-430
Subtracting 430 from itself leaves 0.
\frac{5x^{2}-113x}{5}=-\frac{430}{5}
Divide both sides by 5.
x^{2}-\frac{113}{5}x=-\frac{430}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{113}{5}x=-86
Divide -430 by 5.
x^{2}-\frac{113}{5}x+\left(-\frac{113}{10}\right)^{2}=-86+\left(-\frac{113}{10}\right)^{2}
Divide -\frac{113}{5}, the coefficient of the x term, by 2 to get -\frac{113}{10}. Then add the square of -\frac{113}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{113}{5}x+\frac{12769}{100}=-86+\frac{12769}{100}
Square -\frac{113}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{113}{5}x+\frac{12769}{100}=\frac{4169}{100}
Add -86 to \frac{12769}{100}.
\left(x-\frac{113}{10}\right)^{2}=\frac{4169}{100}
Factor x^{2}-\frac{113}{5}x+\frac{12769}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{113}{10}\right)^{2}}=\sqrt{\frac{4169}{100}}
Take the square root of both sides of the equation.
x-\frac{113}{10}=\frac{\sqrt{4169}}{10} x-\frac{113}{10}=-\frac{\sqrt{4169}}{10}
Simplify.
x=\frac{\sqrt{4169}+113}{10} x=\frac{113-\sqrt{4169}}{10}
Add \frac{113}{10} to both sides of the equation.