Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}-10x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-5\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -10 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-5\right)}}{2\times 5}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-10\right)±\sqrt{100+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-\left(-10\right)±\sqrt{200}}{2\times 5}
Add 100 to 100.
x=\frac{-\left(-10\right)±10\sqrt{2}}{2\times 5}
Take the square root of 200.
x=\frac{10±10\sqrt{2}}{2\times 5}
The opposite of -10 is 10.
x=\frac{10±10\sqrt{2}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{2}+10}{10}
Now solve the equation x=\frac{10±10\sqrt{2}}{10} when ± is plus. Add 10 to 10\sqrt{2}.
x=\sqrt{2}+1
Divide 10+10\sqrt{2} by 10.
x=\frac{10-10\sqrt{2}}{10}
Now solve the equation x=\frac{10±10\sqrt{2}}{10} when ± is minus. Subtract 10\sqrt{2} from 10.
x=1-\sqrt{2}
Divide 10-10\sqrt{2} by 10.
x=\sqrt{2}+1 x=1-\sqrt{2}
The equation is now solved.
5x^{2}-10x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}-10x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
5x^{2}-10x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
5x^{2}-10x=5
Subtract -5 from 0.
\frac{5x^{2}-10x}{5}=\frac{5}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-2x=\frac{5}{5}
Divide -10 by 5.
x^{2}-2x=1
Divide 5 by 5.
x^{2}-2x+1=1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=2
Add 1 to 1.
\left(x-1\right)^{2}=2
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-1=\sqrt{2} x-1=-\sqrt{2}
Simplify.
x=\sqrt{2}+1 x=1-\sqrt{2}
Add 1 to both sides of the equation.