Solve for x
x = \frac{\sqrt{15} + 3}{5} \approx 1.374596669
x=\frac{3-\sqrt{15}}{5}\approx -0.174596669
Graph
Share
Copied to clipboard
5x^{2}=3\left(0.16+0.8x+x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(0.4+x\right)^{2}.
5x^{2}=0.48+2.4x+3x^{2}
Use the distributive property to multiply 3 by 0.16+0.8x+x^{2}.
5x^{2}-0.48=2.4x+3x^{2}
Subtract 0.48 from both sides.
5x^{2}-0.48-2.4x=3x^{2}
Subtract 2.4x from both sides.
5x^{2}-0.48-2.4x-3x^{2}=0
Subtract 3x^{2} from both sides.
2x^{2}-0.48-2.4x=0
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}-2.4x-0.48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2.4\right)±\sqrt{\left(-2.4\right)^{2}-4\times 2\left(-0.48\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2.4 for b, and -0.48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.4\right)±\sqrt{5.76-4\times 2\left(-0.48\right)}}{2\times 2}
Square -2.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.4\right)±\sqrt{5.76-8\left(-0.48\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2.4\right)±\sqrt{\frac{144+96}{25}}}{2\times 2}
Multiply -8 times -0.48.
x=\frac{-\left(-2.4\right)±\sqrt{9.6}}{2\times 2}
Add 5.76 to 3.84 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-2.4\right)±\frac{4\sqrt{15}}{5}}{2\times 2}
Take the square root of 9.6.
x=\frac{2.4±\frac{4\sqrt{15}}{5}}{2\times 2}
The opposite of -2.4 is 2.4.
x=\frac{2.4±\frac{4\sqrt{15}}{5}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{15}+12}{4\times 5}
Now solve the equation x=\frac{2.4±\frac{4\sqrt{15}}{5}}{4} when ± is plus. Add 2.4 to \frac{4\sqrt{15}}{5}.
x=\frac{\sqrt{15}+3}{5}
Divide \frac{12+4\sqrt{15}}{5} by 4.
x=\frac{12-4\sqrt{15}}{4\times 5}
Now solve the equation x=\frac{2.4±\frac{4\sqrt{15}}{5}}{4} when ± is minus. Subtract \frac{4\sqrt{15}}{5} from 2.4.
x=\frac{3-\sqrt{15}}{5}
Divide \frac{12-4\sqrt{15}}{5} by 4.
x=\frac{\sqrt{15}+3}{5} x=\frac{3-\sqrt{15}}{5}
The equation is now solved.
5x^{2}=3\left(0.16+0.8x+x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(0.4+x\right)^{2}.
5x^{2}=0.48+2.4x+3x^{2}
Use the distributive property to multiply 3 by 0.16+0.8x+x^{2}.
5x^{2}-2.4x=0.48+3x^{2}
Subtract 2.4x from both sides.
5x^{2}-2.4x-3x^{2}=0.48
Subtract 3x^{2} from both sides.
2x^{2}-2.4x=0.48
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
\frac{2x^{2}-2.4x}{2}=\frac{0.48}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2.4}{2}\right)x=\frac{0.48}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-1.2x=\frac{0.48}{2}
Divide -2.4 by 2.
x^{2}-1.2x=0.24
Divide 0.48 by 2.
x^{2}-1.2x+\left(-0.6\right)^{2}=0.24+\left(-0.6\right)^{2}
Divide -1.2, the coefficient of the x term, by 2 to get -0.6. Then add the square of -0.6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.2x+0.36=\frac{6+9}{25}
Square -0.6 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.2x+0.36=0.6
Add 0.24 to 0.36 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.6\right)^{2}=0.6
Factor x^{2}-1.2x+0.36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.6\right)^{2}}=\sqrt{0.6}
Take the square root of both sides of the equation.
x-0.6=\frac{\sqrt{15}}{5} x-0.6=-\frac{\sqrt{15}}{5}
Simplify.
x=\frac{\sqrt{15}+3}{5} x=\frac{3-\sqrt{15}}{5}
Add 0.6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}