Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+9x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 5}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\times 5}}{2\times 5}
Square 9.
x=\frac{-9±\sqrt{81-20}}{2\times 5}
Multiply -4 times 5.
x=\frac{-9±\sqrt{61}}{2\times 5}
Add 81 to -20.
x=\frac{-9±\sqrt{61}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{61}-9}{10}
Now solve the equation x=\frac{-9±\sqrt{61}}{10} when ± is plus. Add -9 to \sqrt{61}.
x=\frac{-\sqrt{61}-9}{10}
Now solve the equation x=\frac{-9±\sqrt{61}}{10} when ± is minus. Subtract \sqrt{61} from -9.
5x^{2}+9x+1=5\left(x-\frac{\sqrt{61}-9}{10}\right)\left(x-\frac{-\sqrt{61}-9}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+\sqrt{61}}{10} for x_{1} and \frac{-9-\sqrt{61}}{10} for x_{2}.