Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+8x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 5\left(-15\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 5\left(-15\right)}}{2\times 5}
Square 8.
x=\frac{-8±\sqrt{64-20\left(-15\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-8±\sqrt{64+300}}{2\times 5}
Multiply -20 times -15.
x=\frac{-8±\sqrt{364}}{2\times 5}
Add 64 to 300.
x=\frac{-8±2\sqrt{91}}{2\times 5}
Take the square root of 364.
x=\frac{-8±2\sqrt{91}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{91}-8}{10}
Now solve the equation x=\frac{-8±2\sqrt{91}}{10} when ± is plus. Add -8 to 2\sqrt{91}.
x=\frac{\sqrt{91}-4}{5}
Divide -8+2\sqrt{91} by 10.
x=\frac{-2\sqrt{91}-8}{10}
Now solve the equation x=\frac{-8±2\sqrt{91}}{10} when ± is minus. Subtract 2\sqrt{91} from -8.
x=\frac{-\sqrt{91}-4}{5}
Divide -8-2\sqrt{91} by 10.
5x^{2}+8x-15=5\left(x-\frac{\sqrt{91}-4}{5}\right)\left(x-\frac{-\sqrt{91}-4}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-4+\sqrt{91}}{5} for x_{1} and \frac{-4-\sqrt{91}}{5} for x_{2}.