Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+7x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 5\left(-2\right)}}{2\times 5}
Square 7.
x=\frac{-7±\sqrt{49-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-7±\sqrt{49+40}}{2\times 5}
Multiply -20 times -2.
x=\frac{-7±\sqrt{89}}{2\times 5}
Add 49 to 40.
x=\frac{-7±\sqrt{89}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{89}-7}{10}
Now solve the equation x=\frac{-7±\sqrt{89}}{10} when ± is plus. Add -7 to \sqrt{89}.
x=\frac{-\sqrt{89}-7}{10}
Now solve the equation x=\frac{-7±\sqrt{89}}{10} when ± is minus. Subtract \sqrt{89} from -7.
5x^{2}+7x-2=5\left(x-\frac{\sqrt{89}-7}{10}\right)\left(x-\frac{-\sqrt{89}-7}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+\sqrt{89}}{10} for x_{1} and \frac{-7-\sqrt{89}}{10} for x_{2}.