Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+6x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-9\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 5\left(-9\right)}}{2\times 5}
Square 6.
x=\frac{-6±\sqrt{36-20\left(-9\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-6±\sqrt{36+180}}{2\times 5}
Multiply -20 times -9.
x=\frac{-6±\sqrt{216}}{2\times 5}
Add 36 to 180.
x=\frac{-6±6\sqrt{6}}{2\times 5}
Take the square root of 216.
x=\frac{-6±6\sqrt{6}}{10}
Multiply 2 times 5.
x=\frac{6\sqrt{6}-6}{10}
Now solve the equation x=\frac{-6±6\sqrt{6}}{10} when ± is plus. Add -6 to 6\sqrt{6}.
x=\frac{3\sqrt{6}-3}{5}
Divide -6+6\sqrt{6} by 10.
x=\frac{-6\sqrt{6}-6}{10}
Now solve the equation x=\frac{-6±6\sqrt{6}}{10} when ± is minus. Subtract 6\sqrt{6} from -6.
x=\frac{-3\sqrt{6}-3}{5}
Divide -6-6\sqrt{6} by 10.
5x^{2}+6x-9=5\left(x-\frac{3\sqrt{6}-3}{5}\right)\left(x-\frac{-3\sqrt{6}-3}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+3\sqrt{6}}{5} for x_{1} and \frac{-3-3\sqrt{6}}{5} for x_{2}.