Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+5x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 5\times 9}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 5 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 5\times 9}}{2\times 5}
Square 5.
x=\frac{-5±\sqrt{25-20\times 9}}{2\times 5}
Multiply -4 times 5.
x=\frac{-5±\sqrt{25-180}}{2\times 5}
Multiply -20 times 9.
x=\frac{-5±\sqrt{-155}}{2\times 5}
Add 25 to -180.
x=\frac{-5±\sqrt{155}i}{2\times 5}
Take the square root of -155.
x=\frac{-5±\sqrt{155}i}{10}
Multiply 2 times 5.
x=\frac{-5+\sqrt{155}i}{10}
Now solve the equation x=\frac{-5±\sqrt{155}i}{10} when ± is plus. Add -5 to i\sqrt{155}.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2}
Divide -5+i\sqrt{155} by 10.
x=\frac{-\sqrt{155}i-5}{10}
Now solve the equation x=\frac{-5±\sqrt{155}i}{10} when ± is minus. Subtract i\sqrt{155} from -5.
x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
Divide -5-i\sqrt{155} by 10.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2} x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
The equation is now solved.
5x^{2}+5x+9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+5x+9-9=-9
Subtract 9 from both sides of the equation.
5x^{2}+5x=-9
Subtracting 9 from itself leaves 0.
\frac{5x^{2}+5x}{5}=-\frac{9}{5}
Divide both sides by 5.
x^{2}+\frac{5}{5}x=-\frac{9}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+x=-\frac{9}{5}
Divide 5 by 5.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{5}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-\frac{9}{5}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{31}{20}
Add -\frac{9}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=-\frac{31}{20}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{31}{20}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{155}i}{10} x+\frac{1}{2}=-\frac{\sqrt{155}i}{10}
Simplify.
x=\frac{\sqrt{155}i}{10}-\frac{1}{2} x=-\frac{\sqrt{155}i}{10}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.