Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=4 ab=5\left(-12\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-6 b=10
The solution is the pair that gives sum 4.
\left(5x^{2}-6x\right)+\left(10x-12\right)
Rewrite 5x^{2}+4x-12 as \left(5x^{2}-6x\right)+\left(10x-12\right).
x\left(5x-6\right)+2\left(5x-6\right)
Factor out x in the first and 2 in the second group.
\left(5x-6\right)\left(x+2\right)
Factor out common term 5x-6 by using distributive property.
5x^{2}+4x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 5\left(-12\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 5\left(-12\right)}}{2\times 5}
Square 4.
x=\frac{-4±\sqrt{16-20\left(-12\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-4±\sqrt{16+240}}{2\times 5}
Multiply -20 times -12.
x=\frac{-4±\sqrt{256}}{2\times 5}
Add 16 to 240.
x=\frac{-4±16}{2\times 5}
Take the square root of 256.
x=\frac{-4±16}{10}
Multiply 2 times 5.
x=\frac{12}{10}
Now solve the equation x=\frac{-4±16}{10} when ± is plus. Add -4 to 16.
x=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{20}{10}
Now solve the equation x=\frac{-4±16}{10} when ± is minus. Subtract 16 from -4.
x=-2
Divide -20 by 10.
5x^{2}+4x-12=5\left(x-\frac{6}{5}\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{6}{5} for x_{1} and -2 for x_{2}.
5x^{2}+4x-12=5\left(x-\frac{6}{5}\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}+4x-12=5\times \frac{5x-6}{5}\left(x+2\right)
Subtract \frac{6}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}+4x-12=\left(5x-6\right)\left(x+2\right)
Cancel out 5, the greatest common factor in 5 and 5.