Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+3x=125
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+3x-125=125-125
Subtract 125 from both sides of the equation.
5x^{2}+3x-125=0
Subtracting 125 from itself leaves 0.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-125\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 3 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\left(-125\right)}}{2\times 5}
Square 3.
x=\frac{-3±\sqrt{9-20\left(-125\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-3±\sqrt{9+2500}}{2\times 5}
Multiply -20 times -125.
x=\frac{-3±\sqrt{2509}}{2\times 5}
Add 9 to 2500.
x=\frac{-3±\sqrt{2509}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{2509}-3}{10}
Now solve the equation x=\frac{-3±\sqrt{2509}}{10} when ± is plus. Add -3 to \sqrt{2509}.
x=\frac{-\sqrt{2509}-3}{10}
Now solve the equation x=\frac{-3±\sqrt{2509}}{10} when ± is minus. Subtract \sqrt{2509} from -3.
x=\frac{\sqrt{2509}-3}{10} x=\frac{-\sqrt{2509}-3}{10}
The equation is now solved.
5x^{2}+3x=125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+3x}{5}=\frac{125}{5}
Divide both sides by 5.
x^{2}+\frac{3}{5}x=\frac{125}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{3}{5}x=25
Divide 125 by 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=25+\left(\frac{3}{10}\right)^{2}
Divide \frac{3}{5}, the coefficient of the x term, by 2 to get \frac{3}{10}. Then add the square of \frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{5}x+\frac{9}{100}=25+\frac{9}{100}
Square \frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2509}{100}
Add 25 to \frac{9}{100}.
\left(x+\frac{3}{10}\right)^{2}=\frac{2509}{100}
Factor x^{2}+\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{2509}{100}}
Take the square root of both sides of the equation.
x+\frac{3}{10}=\frac{\sqrt{2509}}{10} x+\frac{3}{10}=-\frac{\sqrt{2509}}{10}
Simplify.
x=\frac{\sqrt{2509}-3}{10} x=\frac{-\sqrt{2509}-3}{10}
Subtract \frac{3}{10} from both sides of the equation.