Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+24=0
Subtract 12 from 36 to get 24.
5x^{2}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{24}{5}
Divide both sides by 5.
x=\frac{2\sqrt{30}i}{5} x=-\frac{2\sqrt{30}i}{5}
The equation is now solved.
5x^{2}+24=0
Subtract 12 from 36 to get 24.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 24}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\times 24}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\times 24}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{-480}}{2\times 5}
Multiply -20 times 24.
x=\frac{0±4\sqrt{30}i}{2\times 5}
Take the square root of -480.
x=\frac{0±4\sqrt{30}i}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{30}i}{5}
Now solve the equation x=\frac{0±4\sqrt{30}i}{10} when ± is plus.
x=-\frac{2\sqrt{30}i}{5}
Now solve the equation x=\frac{0±4\sqrt{30}i}{10} when ± is minus.
x=\frac{2\sqrt{30}i}{5} x=-\frac{2\sqrt{30}i}{5}
The equation is now solved.