Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+30x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times 5\times 8}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 30 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 5\times 8}}{2\times 5}
Square 30.
x=\frac{-30±\sqrt{900-20\times 8}}{2\times 5}
Multiply -4 times 5.
x=\frac{-30±\sqrt{900-160}}{2\times 5}
Multiply -20 times 8.
x=\frac{-30±\sqrt{740}}{2\times 5}
Add 900 to -160.
x=\frac{-30±2\sqrt{185}}{2\times 5}
Take the square root of 740.
x=\frac{-30±2\sqrt{185}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{185}-30}{10}
Now solve the equation x=\frac{-30±2\sqrt{185}}{10} when ± is plus. Add -30 to 2\sqrt{185}.
x=\frac{\sqrt{185}}{5}-3
Divide -30+2\sqrt{185} by 10.
x=\frac{-2\sqrt{185}-30}{10}
Now solve the equation x=\frac{-30±2\sqrt{185}}{10} when ± is minus. Subtract 2\sqrt{185} from -30.
x=-\frac{\sqrt{185}}{5}-3
Divide -30-2\sqrt{185} by 10.
x=\frac{\sqrt{185}}{5}-3 x=-\frac{\sqrt{185}}{5}-3
The equation is now solved.
5x^{2}+30x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+30x+8-8=-8
Subtract 8 from both sides of the equation.
5x^{2}+30x=-8
Subtracting 8 from itself leaves 0.
\frac{5x^{2}+30x}{5}=-\frac{8}{5}
Divide both sides by 5.
x^{2}+\frac{30}{5}x=-\frac{8}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+6x=-\frac{8}{5}
Divide 30 by 5.
x^{2}+6x+3^{2}=-\frac{8}{5}+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-\frac{8}{5}+9
Square 3.
x^{2}+6x+9=\frac{37}{5}
Add -\frac{8}{5} to 9.
\left(x+3\right)^{2}=\frac{37}{5}
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{37}{5}}
Take the square root of both sides of the equation.
x+3=\frac{\sqrt{185}}{5} x+3=-\frac{\sqrt{185}}{5}
Simplify.
x=\frac{\sqrt{185}}{5}-3 x=-\frac{\sqrt{185}}{5}-3
Subtract 3 from both sides of the equation.