Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+2x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-6\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 5\left(-6\right)}}{2\times 5}
Square 2.
x=\frac{-2±\sqrt{4-20\left(-6\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-2±\sqrt{4+120}}{2\times 5}
Multiply -20 times -6.
x=\frac{-2±\sqrt{124}}{2\times 5}
Add 4 to 120.
x=\frac{-2±2\sqrt{31}}{2\times 5}
Take the square root of 124.
x=\frac{-2±2\sqrt{31}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{31}-2}{10}
Now solve the equation x=\frac{-2±2\sqrt{31}}{10} when ± is plus. Add -2 to 2\sqrt{31}.
x=\frac{\sqrt{31}-1}{5}
Divide -2+2\sqrt{31} by 10.
x=\frac{-2\sqrt{31}-2}{10}
Now solve the equation x=\frac{-2±2\sqrt{31}}{10} when ± is minus. Subtract 2\sqrt{31} from -2.
x=\frac{-\sqrt{31}-1}{5}
Divide -2-2\sqrt{31} by 10.
5x^{2}+2x-6=5\left(x-\frac{\sqrt{31}-1}{5}\right)\left(x-\frac{-\sqrt{31}-1}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{31}}{5} for x_{1} and \frac{-1-\sqrt{31}}{5} for x_{2}.