Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=24 ab=5\left(-5\right)=-25
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,25 -5,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -25.
-1+25=24 -5+5=0
Calculate the sum for each pair.
a=-1 b=25
The solution is the pair that gives sum 24.
\left(5x^{2}-x\right)+\left(25x-5\right)
Rewrite 5x^{2}+24x-5 as \left(5x^{2}-x\right)+\left(25x-5\right).
x\left(5x-1\right)+5\left(5x-1\right)
Factor out x in the first and 5 in the second group.
\left(5x-1\right)\left(x+5\right)
Factor out common term 5x-1 by using distributive property.
5x^{2}+24x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 5\left(-5\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{576-4\times 5\left(-5\right)}}{2\times 5}
Square 24.
x=\frac{-24±\sqrt{576-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-24±\sqrt{576+100}}{2\times 5}
Multiply -20 times -5.
x=\frac{-24±\sqrt{676}}{2\times 5}
Add 576 to 100.
x=\frac{-24±26}{2\times 5}
Take the square root of 676.
x=\frac{-24±26}{10}
Multiply 2 times 5.
x=\frac{2}{10}
Now solve the equation x=\frac{-24±26}{10} when ± is plus. Add -24 to 26.
x=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{50}{10}
Now solve the equation x=\frac{-24±26}{10} when ± is minus. Subtract 26 from -24.
x=-5
Divide -50 by 10.
5x^{2}+24x-5=5\left(x-\frac{1}{5}\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and -5 for x_{2}.
5x^{2}+24x-5=5\left(x-\frac{1}{5}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}+24x-5=5\times \frac{5x-1}{5}\left(x+5\right)
Subtract \frac{1}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}+24x-5=\left(5x-1\right)\left(x+5\right)
Cancel out 5, the greatest common factor in 5 and 5.