Solve for x
x = \frac{\sqrt{2221} - 21}{10} \approx 2.612748667
x=\frac{-\sqrt{2221}-21}{10}\approx -6.812748667
Graph
Share
Copied to clipboard
5x^{2}+21x-76=13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5x^{2}+21x-76-13=13-13
Subtract 13 from both sides of the equation.
5x^{2}+21x-76-13=0
Subtracting 13 from itself leaves 0.
5x^{2}+21x-89=0
Subtract 13 from -76.
x=\frac{-21±\sqrt{21^{2}-4\times 5\left(-89\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 21 for b, and -89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 5\left(-89\right)}}{2\times 5}
Square 21.
x=\frac{-21±\sqrt{441-20\left(-89\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-21±\sqrt{441+1780}}{2\times 5}
Multiply -20 times -89.
x=\frac{-21±\sqrt{2221}}{2\times 5}
Add 441 to 1780.
x=\frac{-21±\sqrt{2221}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{2221}-21}{10}
Now solve the equation x=\frac{-21±\sqrt{2221}}{10} when ± is plus. Add -21 to \sqrt{2221}.
x=\frac{-\sqrt{2221}-21}{10}
Now solve the equation x=\frac{-21±\sqrt{2221}}{10} when ± is minus. Subtract \sqrt{2221} from -21.
x=\frac{\sqrt{2221}-21}{10} x=\frac{-\sqrt{2221}-21}{10}
The equation is now solved.
5x^{2}+21x-76=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+21x-76-\left(-76\right)=13-\left(-76\right)
Add 76 to both sides of the equation.
5x^{2}+21x=13-\left(-76\right)
Subtracting -76 from itself leaves 0.
5x^{2}+21x=89
Subtract -76 from 13.
\frac{5x^{2}+21x}{5}=\frac{89}{5}
Divide both sides by 5.
x^{2}+\frac{21}{5}x=\frac{89}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{21}{5}x+\left(\frac{21}{10}\right)^{2}=\frac{89}{5}+\left(\frac{21}{10}\right)^{2}
Divide \frac{21}{5}, the coefficient of the x term, by 2 to get \frac{21}{10}. Then add the square of \frac{21}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{5}x+\frac{441}{100}=\frac{89}{5}+\frac{441}{100}
Square \frac{21}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{5}x+\frac{441}{100}=\frac{2221}{100}
Add \frac{89}{5} to \frac{441}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{21}{10}\right)^{2}=\frac{2221}{100}
Factor x^{2}+\frac{21}{5}x+\frac{441}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{10}\right)^{2}}=\sqrt{\frac{2221}{100}}
Take the square root of both sides of the equation.
x+\frac{21}{10}=\frac{\sqrt{2221}}{10} x+\frac{21}{10}=-\frac{\sqrt{2221}}{10}
Simplify.
x=\frac{\sqrt{2221}-21}{10} x=\frac{-\sqrt{2221}-21}{10}
Subtract \frac{21}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}