Solve for x
x = \frac{\sqrt{141} + 9}{10} \approx 2.087434209
x=\frac{9-\sqrt{141}}{10}\approx -0.287434209
Graph
Share
Copied to clipboard
5x^{2}+2-9x=5
Subtract 9x from both sides.
5x^{2}+2-9x-5=0
Subtract 5 from both sides.
5x^{2}-3-9x=0
Subtract 5 from 2 to get -3.
5x^{2}-9x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -9 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 5\left(-3\right)}}{2\times 5}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-20\left(-3\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-9\right)±\sqrt{81+60}}{2\times 5}
Multiply -20 times -3.
x=\frac{-\left(-9\right)±\sqrt{141}}{2\times 5}
Add 81 to 60.
x=\frac{9±\sqrt{141}}{2\times 5}
The opposite of -9 is 9.
x=\frac{9±\sqrt{141}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{141}+9}{10}
Now solve the equation x=\frac{9±\sqrt{141}}{10} when ± is plus. Add 9 to \sqrt{141}.
x=\frac{9-\sqrt{141}}{10}
Now solve the equation x=\frac{9±\sqrt{141}}{10} when ± is minus. Subtract \sqrt{141} from 9.
x=\frac{\sqrt{141}+9}{10} x=\frac{9-\sqrt{141}}{10}
The equation is now solved.
5x^{2}+2-9x=5
Subtract 9x from both sides.
5x^{2}-9x=5-2
Subtract 2 from both sides.
5x^{2}-9x=3
Subtract 2 from 5 to get 3.
\frac{5x^{2}-9x}{5}=\frac{3}{5}
Divide both sides by 5.
x^{2}-\frac{9}{5}x=\frac{3}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=\frac{3}{5}+\left(-\frac{9}{10}\right)^{2}
Divide -\frac{9}{5}, the coefficient of the x term, by 2 to get -\frac{9}{10}. Then add the square of -\frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{3}{5}+\frac{81}{100}
Square -\frac{9}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{141}{100}
Add \frac{3}{5} to \frac{81}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{10}\right)^{2}=\frac{141}{100}
Factor x^{2}-\frac{9}{5}x+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{\frac{141}{100}}
Take the square root of both sides of the equation.
x-\frac{9}{10}=\frac{\sqrt{141}}{10} x-\frac{9}{10}=-\frac{\sqrt{141}}{10}
Simplify.
x=\frac{\sqrt{141}+9}{10} x=\frac{9-\sqrt{141}}{10}
Add \frac{9}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}