Factor
\left(5x-1\right)\left(x+4\right)
Evaluate
\left(5x-1\right)\left(x+4\right)
Graph
Share
Copied to clipboard
a+b=19 ab=5\left(-4\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=-1 b=20
The solution is the pair that gives sum 19.
\left(5x^{2}-x\right)+\left(20x-4\right)
Rewrite 5x^{2}+19x-4 as \left(5x^{2}-x\right)+\left(20x-4\right).
x\left(5x-1\right)+4\left(5x-1\right)
Factor out x in the first and 4 in the second group.
\left(5x-1\right)\left(x+4\right)
Factor out common term 5x-1 by using distributive property.
5x^{2}+19x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 5\left(-4\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19±\sqrt{361-4\times 5\left(-4\right)}}{2\times 5}
Square 19.
x=\frac{-19±\sqrt{361-20\left(-4\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-19±\sqrt{361+80}}{2\times 5}
Multiply -20 times -4.
x=\frac{-19±\sqrt{441}}{2\times 5}
Add 361 to 80.
x=\frac{-19±21}{2\times 5}
Take the square root of 441.
x=\frac{-19±21}{10}
Multiply 2 times 5.
x=\frac{2}{10}
Now solve the equation x=\frac{-19±21}{10} when ± is plus. Add -19 to 21.
x=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{40}{10}
Now solve the equation x=\frac{-19±21}{10} when ± is minus. Subtract 21 from -19.
x=-4
Divide -40 by 10.
5x^{2}+19x-4=5\left(x-\frac{1}{5}\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and -4 for x_{2}.
5x^{2}+19x-4=5\left(x-\frac{1}{5}\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5x^{2}+19x-4=5\times \frac{5x-1}{5}\left(x+4\right)
Subtract \frac{1}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5x^{2}+19x-4=\left(5x-1\right)\left(x+4\right)
Cancel out 5, the greatest common factor in 5 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}