Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+15x-12x=-13
Subtract 12x from both sides.
5x^{2}+3x=-13
Combine 15x and -12x to get 3x.
5x^{2}+3x+13=0
Add 13 to both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 5\times 13}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 3 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\times 13}}{2\times 5}
Square 3.
x=\frac{-3±\sqrt{9-20\times 13}}{2\times 5}
Multiply -4 times 5.
x=\frac{-3±\sqrt{9-260}}{2\times 5}
Multiply -20 times 13.
x=\frac{-3±\sqrt{-251}}{2\times 5}
Add 9 to -260.
x=\frac{-3±\sqrt{251}i}{2\times 5}
Take the square root of -251.
x=\frac{-3±\sqrt{251}i}{10}
Multiply 2 times 5.
x=\frac{-3+\sqrt{251}i}{10}
Now solve the equation x=\frac{-3±\sqrt{251}i}{10} when ± is plus. Add -3 to i\sqrt{251}.
x=\frac{-\sqrt{251}i-3}{10}
Now solve the equation x=\frac{-3±\sqrt{251}i}{10} when ± is minus. Subtract i\sqrt{251} from -3.
x=\frac{-3+\sqrt{251}i}{10} x=\frac{-\sqrt{251}i-3}{10}
The equation is now solved.
5x^{2}+15x-12x=-13
Subtract 12x from both sides.
5x^{2}+3x=-13
Combine 15x and -12x to get 3x.
\frac{5x^{2}+3x}{5}=-\frac{13}{5}
Divide both sides by 5.
x^{2}+\frac{3}{5}x=-\frac{13}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=-\frac{13}{5}+\left(\frac{3}{10}\right)^{2}
Divide \frac{3}{5}, the coefficient of the x term, by 2 to get \frac{3}{10}. Then add the square of \frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{13}{5}+\frac{9}{100}
Square \frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{251}{100}
Add -\frac{13}{5} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{10}\right)^{2}=-\frac{251}{100}
Factor x^{2}+\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{-\frac{251}{100}}
Take the square root of both sides of the equation.
x+\frac{3}{10}=\frac{\sqrt{251}i}{10} x+\frac{3}{10}=-\frac{\sqrt{251}i}{10}
Simplify.
x=\frac{-3+\sqrt{251}i}{10} x=\frac{-\sqrt{251}i-3}{10}
Subtract \frac{3}{10} from both sides of the equation.