Solve for x
x=\frac{3\sqrt{510}}{65}+\frac{21}{13}\approx 2.657685211
x=-\frac{3\sqrt{510}}{65}+\frac{21}{13}\approx 0.573084019
Graph
Share
Copied to clipboard
5x^{2}+210x-70x^{2}+9=108
Use the distributive property to multiply 14x by 15-5x.
-65x^{2}+210x+9=108
Combine 5x^{2} and -70x^{2} to get -65x^{2}.
-65x^{2}+210x+9-108=0
Subtract 108 from both sides.
-65x^{2}+210x-99=0
Subtract 108 from 9 to get -99.
x=\frac{-210±\sqrt{210^{2}-4\left(-65\right)\left(-99\right)}}{2\left(-65\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -65 for a, 210 for b, and -99 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-210±\sqrt{44100-4\left(-65\right)\left(-99\right)}}{2\left(-65\right)}
Square 210.
x=\frac{-210±\sqrt{44100+260\left(-99\right)}}{2\left(-65\right)}
Multiply -4 times -65.
x=\frac{-210±\sqrt{44100-25740}}{2\left(-65\right)}
Multiply 260 times -99.
x=\frac{-210±\sqrt{18360}}{2\left(-65\right)}
Add 44100 to -25740.
x=\frac{-210±6\sqrt{510}}{2\left(-65\right)}
Take the square root of 18360.
x=\frac{-210±6\sqrt{510}}{-130}
Multiply 2 times -65.
x=\frac{6\sqrt{510}-210}{-130}
Now solve the equation x=\frac{-210±6\sqrt{510}}{-130} when ± is plus. Add -210 to 6\sqrt{510}.
x=-\frac{3\sqrt{510}}{65}+\frac{21}{13}
Divide -210+6\sqrt{510} by -130.
x=\frac{-6\sqrt{510}-210}{-130}
Now solve the equation x=\frac{-210±6\sqrt{510}}{-130} when ± is minus. Subtract 6\sqrt{510} from -210.
x=\frac{3\sqrt{510}}{65}+\frac{21}{13}
Divide -210-6\sqrt{510} by -130.
x=-\frac{3\sqrt{510}}{65}+\frac{21}{13} x=\frac{3\sqrt{510}}{65}+\frac{21}{13}
The equation is now solved.
5x^{2}+210x-70x^{2}+9=108
Use the distributive property to multiply 14x by 15-5x.
-65x^{2}+210x+9=108
Combine 5x^{2} and -70x^{2} to get -65x^{2}.
-65x^{2}+210x=108-9
Subtract 9 from both sides.
-65x^{2}+210x=99
Subtract 9 from 108 to get 99.
\frac{-65x^{2}+210x}{-65}=\frac{99}{-65}
Divide both sides by -65.
x^{2}+\frac{210}{-65}x=\frac{99}{-65}
Dividing by -65 undoes the multiplication by -65.
x^{2}-\frac{42}{13}x=\frac{99}{-65}
Reduce the fraction \frac{210}{-65} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{42}{13}x=-\frac{99}{65}
Divide 99 by -65.
x^{2}-\frac{42}{13}x+\left(-\frac{21}{13}\right)^{2}=-\frac{99}{65}+\left(-\frac{21}{13}\right)^{2}
Divide -\frac{42}{13}, the coefficient of the x term, by 2 to get -\frac{21}{13}. Then add the square of -\frac{21}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{42}{13}x+\frac{441}{169}=-\frac{99}{65}+\frac{441}{169}
Square -\frac{21}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{42}{13}x+\frac{441}{169}=\frac{918}{845}
Add -\frac{99}{65} to \frac{441}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{21}{13}\right)^{2}=\frac{918}{845}
Factor x^{2}-\frac{42}{13}x+\frac{441}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{13}\right)^{2}}=\sqrt{\frac{918}{845}}
Take the square root of both sides of the equation.
x-\frac{21}{13}=\frac{3\sqrt{510}}{65} x-\frac{21}{13}=-\frac{3\sqrt{510}}{65}
Simplify.
x=\frac{3\sqrt{510}}{65}+\frac{21}{13} x=-\frac{3\sqrt{510}}{65}+\frac{21}{13}
Add \frac{21}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}