Solve for x
x=\frac{3\sqrt{5}}{5}-1\approx 0.341640786
x=-\frac{3\sqrt{5}}{5}-1\approx -2.341640786
Graph
Share
Copied to clipboard
5x^{2}+10x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-4\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-4\right)}}{2\times 5}
Square 10.
x=\frac{-10±\sqrt{100-20\left(-4\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-10±\sqrt{100+80}}{2\times 5}
Multiply -20 times -4.
x=\frac{-10±\sqrt{180}}{2\times 5}
Add 100 to 80.
x=\frac{-10±6\sqrt{5}}{2\times 5}
Take the square root of 180.
x=\frac{-10±6\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{6\sqrt{5}-10}{10}
Now solve the equation x=\frac{-10±6\sqrt{5}}{10} when ± is plus. Add -10 to 6\sqrt{5}.
x=\frac{3\sqrt{5}}{5}-1
Divide -10+6\sqrt{5} by 10.
x=\frac{-6\sqrt{5}-10}{10}
Now solve the equation x=\frac{-10±6\sqrt{5}}{10} when ± is minus. Subtract 6\sqrt{5} from -10.
x=-\frac{3\sqrt{5}}{5}-1
Divide -10-6\sqrt{5} by 10.
x=\frac{3\sqrt{5}}{5}-1 x=-\frac{3\sqrt{5}}{5}-1
The equation is now solved.
5x^{2}+10x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+10x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
5x^{2}+10x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
5x^{2}+10x=4
Subtract -4 from 0.
\frac{5x^{2}+10x}{5}=\frac{4}{5}
Divide both sides by 5.
x^{2}+\frac{10}{5}x=\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+2x=\frac{4}{5}
Divide 10 by 5.
x^{2}+2x+1^{2}=\frac{4}{5}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{4}{5}+1
Square 1.
x^{2}+2x+1=\frac{9}{5}
Add \frac{4}{5} to 1.
\left(x+1\right)^{2}=\frac{9}{5}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{9}{5}}
Take the square root of both sides of the equation.
x+1=\frac{3\sqrt{5}}{5} x+1=-\frac{3\sqrt{5}}{5}
Simplify.
x=\frac{3\sqrt{5}}{5}-1 x=-\frac{3\sqrt{5}}{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}