Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+2x-3\right)
Factor out 5.
a+b=2 ab=1\left(-3\right)=-3
Consider x^{2}+2x-3. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-1 b=3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x^{2}-x\right)+\left(3x-3\right)
Rewrite x^{2}+2x-3 as \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Factor out x in the first and 3 in the second group.
\left(x-1\right)\left(x+3\right)
Factor out common term x-1 by using distributive property.
5\left(x-1\right)\left(x+3\right)
Rewrite the complete factored expression.
5x^{2}+10x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-15\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
Square 10.
x=\frac{-10±\sqrt{100-20\left(-15\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-10±\sqrt{100+300}}{2\times 5}
Multiply -20 times -15.
x=\frac{-10±\sqrt{400}}{2\times 5}
Add 100 to 300.
x=\frac{-10±20}{2\times 5}
Take the square root of 400.
x=\frac{-10±20}{10}
Multiply 2 times 5.
x=\frac{10}{10}
Now solve the equation x=\frac{-10±20}{10} when ± is plus. Add -10 to 20.
x=1
Divide 10 by 10.
x=-\frac{30}{10}
Now solve the equation x=\frac{-10±20}{10} when ± is minus. Subtract 20 from -10.
x=-3
Divide -30 by 10.
5x^{2}+10x-15=5\left(x-1\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -3 for x_{2}.
5x^{2}+10x-15=5\left(x-1\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.